# Survey Designs for Distance Sampling: A Study of Zebra Mussels

#### Alana Danieu, Nick Fredrickson, Emily Kaegi, Clara Livingston Advisor: Katie St. Clair

Carleton College

April 3, 2018

#### • Statistical Reasoning



- Statistical Reasoning
- Lake Burgan Data



- Statistical Reasoning
- Lake Burgan Data
- Simulations



- Statistical Reasoning
- Lake Burgan Data
- Simulations
- Time Analysis



- Statistical Reasoning
- Lake Burgan Data
- Simulations
- Time Analysis
- Further Research



2 Step Approach:

**9** Fit a detection function, g(x), to our data

- **9** Fit a detection function, g(x), to our data
  - x = distance perpendicular to transect

- Fit a detection function, g(x), to our data
  - x = distance perpendicular to transect
- 2 Use information from g(x) to estimate abundance using Horvitz-Thompson estimators

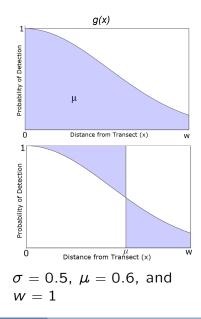
- Fit a detection function, g(x), to our data
  - x = distance perpendicular to transect
- 2 Use information from g(x) to estimate abundance using Horvitz-Thompson estimators
  - Use for simulations

- Fit a detection function, g(x), to our data
  - x = distance perpendicular to transect
- 2 Use information from g(x) to estimate abundance using Horvitz-Thompson estimators
  - Use for simulations
  - We used a half-normal distribution for our models where

$$g(x) = exp\Big[\frac{-x^2}{2\sigma^2}\Big]$$

• Need proper probability density function that integrates to 1 for MLE

$$f(x)=\frac{g(x)}{\mu}$$



 Need proper probability density function that integrates to 1 for MLE

$$f(x)=\frac{g(x)}{\mu}$$

• Normalizing Constant  $\mu$ 

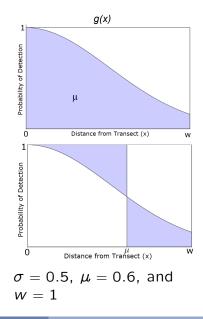


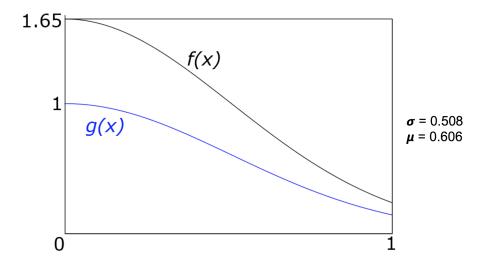
 Need proper probability density function that integrates to 1 for MLE

$$f(x)=\frac{g(x)}{\mu}$$

- Normalizing Constant  $\mu$ 
  - Effective Half-Width

$$\mu=\int_0^w g(x)dx$$





Carleton College

Maximum Likelihood Estimation

- Maximum Likelihood Estimation
  - Likelihood Function

$$L_{x} = \prod_{i=1}^{n} f(x_{i}) = \frac{\prod_{i=1}^{n} g(x_{i})}{\mu^{n}} = \mu^{-n} exp \left[ \frac{-\sum_{i=1}^{n} x_{i}^{2}}{2\sigma^{2}} \right]$$

- Maximum Likelihood Estimation
  - Likelihood Function

$$L_{x} = \prod_{i=1}^{n} f(x_{i}) = \frac{\prod_{i=1}^{n} g(x_{i})}{\mu^{n}} = \mu^{-n} exp \left[ \frac{-\sum_{i=1}^{n} x_{i}^{2}}{2\sigma^{2}} \right]$$

• Find  $\sigma$  that maximizes  $L_X$ 

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

- Maximum Likelihood Estimation
  - Likelihood Function

$$L_{x} = \prod_{i=1}^{n} f(x_{i}) = \frac{\prod_{i=1}^{n} g(x_{i})}{\mu^{n}} = \mu^{-n} exp \left[ \frac{-\sum_{i=1}^{n} x_{i}^{2}}{2\sigma^{2}} \right]$$

• Find  $\sigma$  that maximizes  $L_X$ 

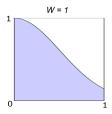
$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

• Only when we assume  $w = \infty$ 

#### Average Probability of Detection

• Average Detectability

$$P_a = rac{2\mu L}{2wL} = rac{\mu}{w}$$

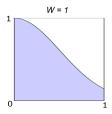


Carleton College

#### Average Probability of Detection

• Average Detectability

$$P_a = rac{2\mu L}{2wL} = rac{\mu}{w}$$

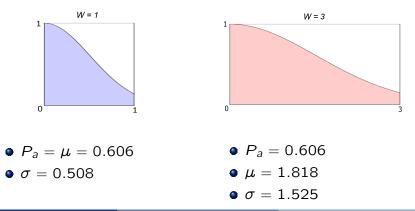


Carleton College

#### Average Probability of Detection

Average Detectability

$$P_a = rac{2\mu L}{2wL} = rac{\mu}{w}$$



## Estimating Abundance

• Horvitz-Thompson Estimator

$$\hat{N} = \sum_{i=1}^{n} \frac{1}{p_i}$$

### Estimating Abundance

• Horvitz-Thompson Estimator

$$\hat{N} = \sum_{i=1}^{n} \frac{1}{p_i}$$

• Where *p<sub>i</sub>* is the probability that a detected mussel was found, thus

$$\hat{p}_i = \frac{a\hat{P_a}}{A}$$

## Estimating Abundance

Horvitz-Thompson Estimator

$$\hat{N} = \sum_{i=1}^{n} \frac{1}{p_i}$$

• Where *p<sub>i</sub>* is the probability that a detected mussel was found, thus

$$\hat{p}_i = \frac{a\hat{P_a}}{A}$$

• And plugging back in we have

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$

Coefficient of variation

- Coefficient of variation
- Let  $\hat{D}$  be our value of interest

$$CV(\hat{D}) = rac{SE(\hat{D})}{\hat{D}}$$

- Coefficient of variation
- Let  $\hat{D}$  be our value of interest

$$CV(\hat{D}) = rac{SE(\hat{D})}{\hat{D}}$$

• Thus, rewritten

$$SE(\hat{D}) = \hat{D} * CV(\hat{D})$$

$$CV(\hat{D}) = \sqrt{rac{rac{\kappa}{L^2(\kappa-1)}\sum_{k=1}^{K}l_k^2(rac{n_k}{l_k} - rac{n}{L})^2}{(n/L)^2} + rac{1}{2n}}$$

• Thus, we write

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

• L =total length of transects in survey

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects
- n = total number of mussels found

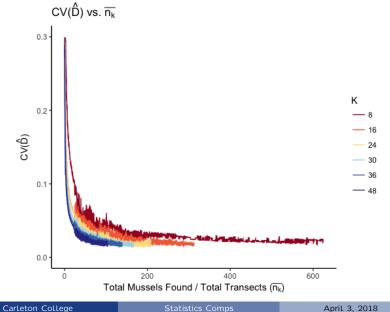
$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects
- n = total number of mussels found
- $n_k$  = number of mussels found on the kth transect

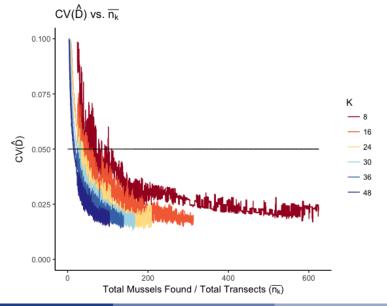
$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects
- n = total number of mussels found
- $n_k$  = number of mussels found on the kth transect
- $l_k = \text{length of of the kth transect (30 meters for all)}$

# Effects of Changing K and n



# Effects of Changing K and n



Carleton College

Statistics Comps

## Cause of Variability in $cv(\hat{D})$

$$CV(\hat{D}) = \sqrt{\frac{\frac{\kappa}{L^2(\kappa-1)}\sum_{k=1}^{\kappa}l_k^2(\frac{n_k}{l_k}-\frac{n}{L})^2}{(n/L)^2}} + \frac{1}{2n}$$

• Multinomial randomization for variation in transects

## Cause of Variability in $cv(\hat{D})$

$$CV(\hat{D}) = \sqrt{\frac{\frac{\kappa}{L^{2}(\kappa-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}}-\frac{n}{L})^{2}}{(n/L)^{2}}} + \frac{1}{2n}$$

- Multinomial randomization for variation in transects
- Assume equal probability

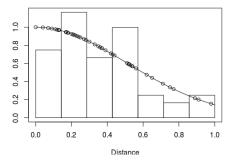
#### Lake Burgan



| Carleton Co | ι | lege | 9 |
|-------------|---|------|---|
|-------------|---|------|---|

#### Fitting Lake Burgan Data to a Model

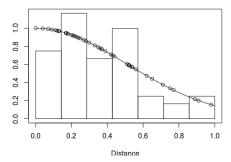
• n = 52 mussels



| Parameter               | Estimate | Std. Error | CV    |
|-------------------------|----------|------------|-------|
| $\hat{\sigma}$          | 0.508    | 0.084      | 0.165 |
| $\hat{\mu} = \hat{P}_a$ | 0.606    | 0.075      | 0.123 |
| $\hat{D}$               | 0.090    | 0.0199     | 0.222 |
| $\hat{N}_a$             | 89.584   | 19.921     | 0.222 |
| $\hat{N}_A$             | 10,760   | 2,392      | 0.222 |

## Fitting Lake Burgan Data to a Model

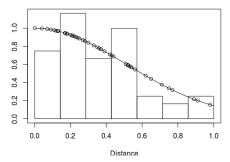
- n = 52 mussels
- *a* = 999 meters<sup>2</sup>



| Parameter               | Estimate | Std. Error | CV    |
|-------------------------|----------|------------|-------|
| $\hat{\sigma}$          | 0.508    | 0.084      | 0.165 |
| $\hat{\mu} = \hat{P}_a$ | 0.606    | 0.075      | 0.123 |
| $\hat{D}$               | 0.090    | 0.0199     | 0.222 |
| $\hat{N}_a$             | 89.584   | 19.921     | 0.222 |
| $\hat{N}_A$             | 10,760   | 2,392      | 0.222 |

#### Fitting Lake Burgan Data to a Model

- n = 52 mussels
- *a* = 999 meters<sup>2</sup>
- *A* = 120,000 meters<sup>2</sup>



| Parameter               | Estimate | Std. Error | CV    |
|-------------------------|----------|------------|-------|
| $\hat{\sigma}$          | 0.508    | 0.084      | 0.165 |
| $\hat{\mu} = \hat{P}_a$ | 0.606    | 0.075      | 0.123 |
| $\hat{D}$               | 0.090    | 0.0199     | 0.222 |
| $\hat{N}_a$             | 89.584   | 19.921     | 0.222 |
| $\hat{N}_A$             | 10,760   | 2,392      | 0.222 |

#### Lake Burgan



Carleton College

The variables we controlled in our simulations were:

• Region Size:  $4000 \times 30 \text{ meters}^2$ 

- Region Size:  $4000 \times 30 \text{ meters}^2$
- Population Size N

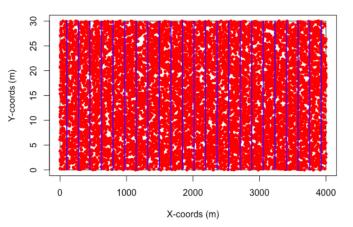
- Region Size: 4000 × 30 meters<sup>2</sup>
- Population Size N
- Number of Transects K

- Region Size: 4000 × 30 meters<sup>2</sup>
- Population Size N
- Number of Transects K
- ullet Detection Scale Parameter  $\sigma$

- Region Size: 4000 × 30 meters<sup>2</sup>
- Population Size N
- Number of Transects K
- Detection Scale Parameter  $\sigma$
- Number of Strata

- Region Size: 4000 × 30 meters<sup>2</sup>
- Population Size N
- Number of Transects K
- ullet Detection Scale Parameter  $\sigma$
- Number of Strata
- Addition of Hotspots (areas of elevated density)

## **Basic Simulation**

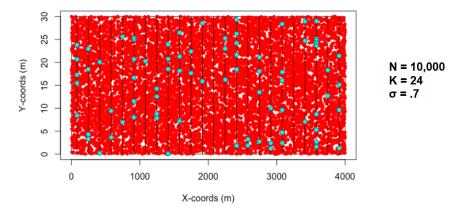


study area

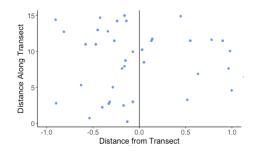
N = 10,000 K = 24

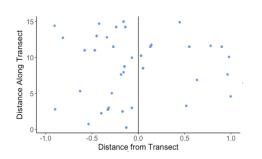
#### **Basic Simulation**

**Example Survey** 



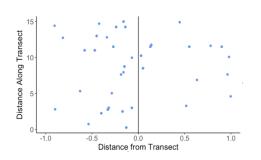
• x = distance from transect





• x = distance from transect

 Each mussel is assigned a probability p<sub>i</sub>

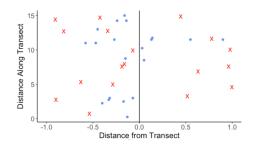


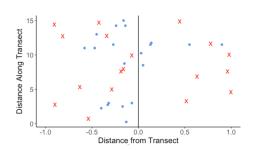
• x = distance from transect

 Each mussel is assigned a probability p<sub>i</sub>

• 
$$p_i = g(x_i)$$

• Detection  $\sim$ Bernoulli( $p_i$ )





• Detection  $\sim$ Bernoulli( $p_i$ )

 Assigned a 1 if found, 0 if not found (red X)

#### Comparing Simulation Results

There are two results we use to quantify the difference between sampling designs:

• Percent Bias (Accuracy)

$$\%\hat{B}ias_{\hat{N}} = \frac{\hat{N} - N}{N} \times 100\%$$

### **Comparing Simulation Results**

There are two results we use to quantify the difference between sampling designs:

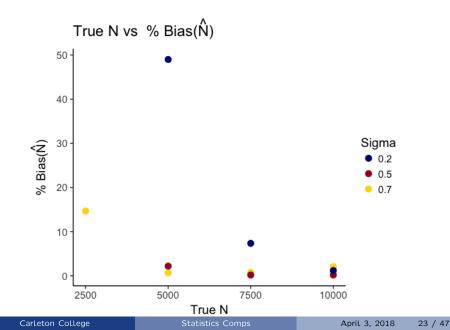
• Percent Bias (Accuracy)

$$\%\hat{Bias}_{\hat{N}} = \frac{\hat{\bar{N}} - N}{N} \times 100\%$$

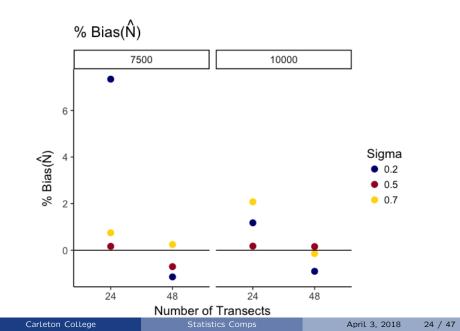
• Coefficient of Variation (Precision)

$$CV(\hat{N}) = rac{SE(\hat{N})}{\hat{ar{N}}}$$

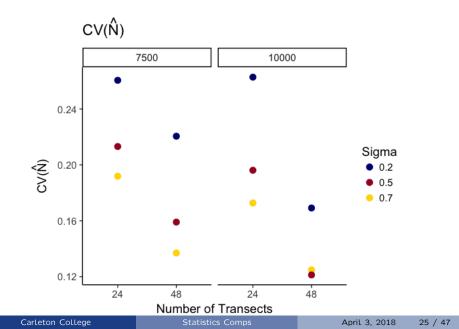
Varying N and  $\sigma$ 



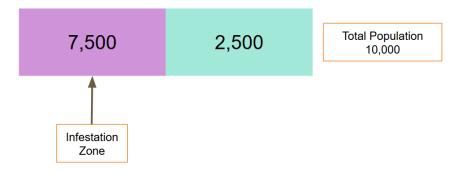
#### Varying number of transects, K



### Varying number of transects, K

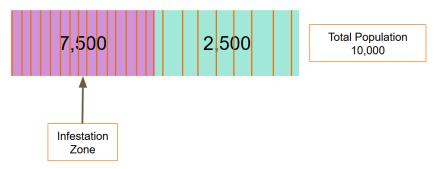


#### Stratified Design

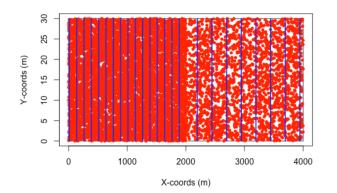


#### Stratified Design: Correctly Identified

#### Correctly Identified Infestation Zone: 16 Transects



## Stratified Design Simulation

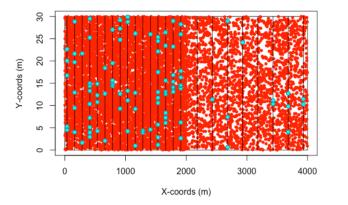


study area

N = 7,500 & 2,500 K = 16, 8

## Stratified Design Simulation

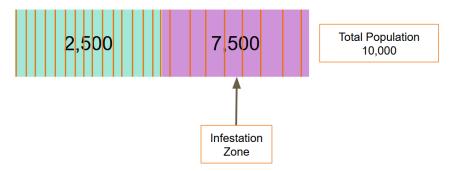
Example Survey



N = 7,500 & 2,500 K = 16, 8

#### Stratified Design: Incorrectly Identified

#### Incorrectly Identified Infestation Zone: 8 Transects



| Carleton | College |
|----------|---------|
|          |         |

#### Stratified Design Results

#### Table: How Stratified Designs Effect Estimates

| Design                 | n   | Ñ      | %Bias <sub>îv</sub> | $CV(\hat{N})$ |
|------------------------|-----|--------|---------------------|---------------|
| Constant K             | 90  | 10,107 | 1.07%               | .16           |
| Correctly Identified   | 105 | 10,032 | .32%                | .16           |
| Incorrectly Identified | 75  | 9, 985 | 15%                 | .17           |

#### Stratified Design Results

#### Table: How Stratified Designs Effect Estimates

| Design                 | n   | Ñ       | %Bias <sub>î</sub> , | $CV(\hat{N})$ |
|------------------------|-----|---------|----------------------|---------------|
| Constant K             | 90  | 10, 107 | 1.07%                | .16           |
| Correctly Identified   | 105 | 10,032  | .32%                 | .16           |
| Incorrectly Identified | 75  | 9, 985  | 15%                  | .17           |

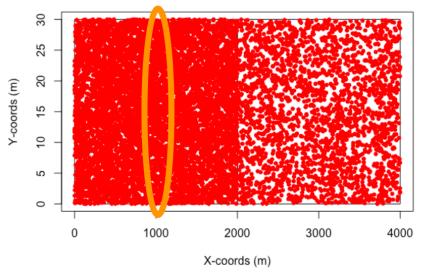
### Stratified Design Results

#### Table: How Stratified Designs Effect Estimates

| Design                 | n   | Ñ       | %Bias <sub>î</sub> , | $CV(\hat{N})$ |
|------------------------|-----|---------|----------------------|---------------|
| Constant K             | 90  | 10, 107 | 1.07%                | .16           |
| Correctly Identified   | 105 | 10,032  | .32%                 | .16           |
| Incorrectly Identified | 75  | 9, 985  | 15%                  | .17           |

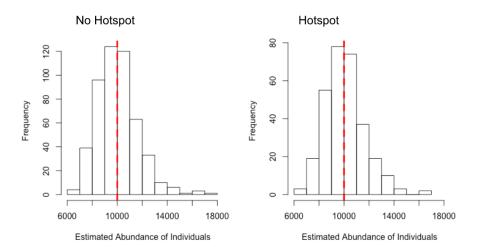
A .01 difference in  $CV(\hat{N})$  is a difference in SE of .01 \* 10000 = 100 mussels

#### Addition of a Hotspot



| Carleton College | Statistics Comps | April 3, 2018 | 34 / 47 |
|------------------|------------------|---------------|---------|
|                  |                  |               | - / -   |

# Hotspot Results: Correctly Identified Infestation Zone

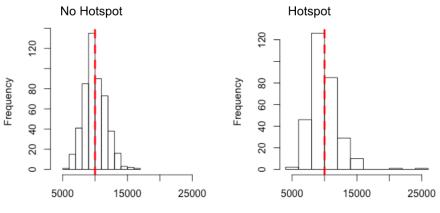


Carleton College

Statistics Comps

April 3, 2018 35 / 47

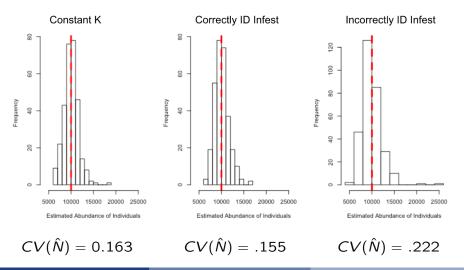
# Hotspot Results: Incorrectly Identified Infestation Zone



Estimated Abundance of Individuals

Estimated Abundance of Individuals

# Simulation Results: Infestation Zone with Hotspot



Carleton College

Statistics Comps

April 3, 2018 37 / 47

• Higher  $\bar{n}$  meant more accurate and precise results

- Higher  $\bar{n}$  meant more accurate and precise results
  - Greater N and  $\sigma$  increase n

- Higher  $\bar{n}$  meant more accurate and precise results
  - Greater N and  $\sigma$  increase n
- Buckland suggests an *n* of at least 60-80

- Higher  $\bar{n}$  meant more accurate and precise results
  - Greater N and  $\sigma$  increase n
- Buckland suggests an *n* of at least 60-80
  - $\% Bias_{\hat{N}}$  was not significantly different than 0

- Higher  $\bar{n}$  meant more accurate and precise results
  - Greater N and  $\sigma$  increase n
- Buckland suggests an *n* of at least 60-80
  - $\% Bias_{\hat{N}}$  was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors

- Higher  $\bar{n}$  meant more accurate and precise results
  - Greater N and  $\sigma$  increase n
- Buckland suggests an *n* of at least 60-80
  - $\% Bias_{\hat{N}}$  was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors
- Predicted  $SE(\hat{N})$  was smaller than the actual distribution of the  $\hat{N}$  values from the 300-500 runs

- Higher  $\bar{n}$  meant more accurate and precise results
  - Greater N and  $\sigma$  increase n
- Buckland suggests an *n* of at least 60-80
  - $\% Bias_{\hat{N}}$  was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors
- Predicted  $SE(\hat{N})$  was smaller than the actual distribution of the  $\hat{N}$  values from the 300-500 runs
  - $SE(\hat{N})$  equation is biased

 Randomly placed 30 small marshmallows within transect



Carleton College

- Randomly placed 30 small marshmallows within transect
- l = 24 meters



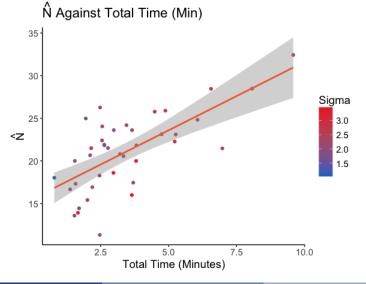
- Randomly placed 30 small marshmallows within transect
- l = 24 meters
- w = 5 meters



- Randomly placed 30 small marshmallows within transect
- l = 24 meters
- w = 5 meters
- Timed participants to see how time affects estimates

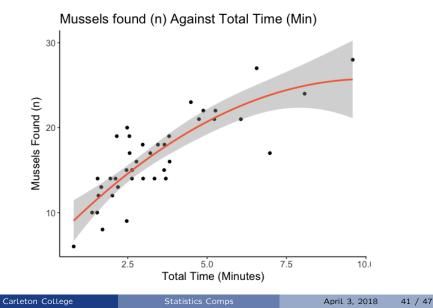


# $\hat{N}$ Against Time

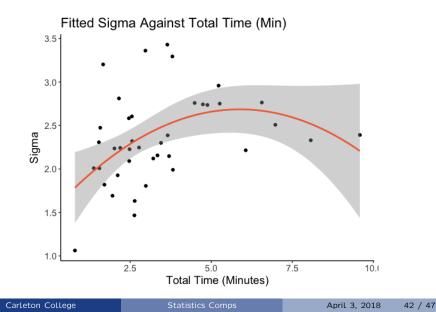


Carleton College

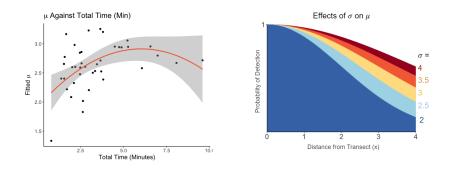
## n Against Time



## $\sigma$ Against Time



Fitted  $\mu$ 



April 3, 2018 43 / 47

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$

$$\hat{P}_a = \frac{\hat{\mu}}{w}$$

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$
$$\hat{P}_a = \frac{\hat{\mu}}{a\hat{P}_a}$$

$$\hat{N} = rac{nA}{a(\hat{\mu}/w)}$$

W

Carleton College

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$
$$\hat{\mu}$$

$$\hat{P}_a = \frac{\mu}{w}$$

$$\hat{N} = \frac{nA}{a(\hat{\mu}/w)}$$

 $\hat{N}$  is a function of n and  $\mu$ , which depends on  $\sigma$ 

Carleton College

Statistics Comps

• Time has a nonlinear relationship with  $\sigma$ ,  $\mu$ , and n

- Time has a nonlinear relationship with  $\sigma$ ,  $\mu$ , and n
- Time has a linear relationship with  $\hat{N}$  as a result

- Time has a nonlinear relationship with  $\sigma$ ,  $\mu$ , and n
- Time has a linear relationship with  $\hat{N}$  as a result
- Choose a time that maximizes detection

- Time has a nonlinear relationship with  $\sigma$ ,  $\mu$ , and n
- Time has a linear relationship with  $\hat{N}$  as a result
- Choose a time that maximizes detection
- ullet Choose a time that optimizes  $\sigma$

- Time has a nonlinear relationship with  $\sigma$ ,  $\mu$ , and n
- Time has a linear relationship with  $\hat{N}$  as a result
- Choose a time that maximizes detection
- ullet Choose a time that optimizes  $\sigma$
- Increased  $\sigma$  implies increased n

- Time has a nonlinear relationship with  $\sigma$ ,  $\mu$ , and n
- Time has a linear relationship with  $\hat{N}$  as a result
- Choose a time that maximizes detection
- $\bullet$  Choose a time that optimizes  $\sigma$
- Increased  $\sigma$  implies increased n
- Supports the claim that we can control  $CV(\hat{D})$  using n

Incorporating habitat covariates

- Incorporating habitat covariates
- Realistic hotspot

- Incorporating habitat covariates
- Realistic hotspot
- More thorough experiment on time

- Incorporating habitat covariates
- Realistic hotspot
- More thorough experiment on time
- Data limitations

#### References

- Buckland, S.T., Rexstad, E.A., Marques, T.A., Oedekoven, C.S. 2015. Distance Sampling: Methods and Applications. Switzerland. Springer International Publishing.
- Hart, R.A., A.C. Miller, and M. Davis. 2001. Empirically Derived Survival Rates of a Native Mussel, Amblema plicata, in the Mississippi and Otter Tail Rivers, Minnesota. American Midland Naturalist 146: 254-263.
- Hebert, P. D. N., B. W. Muncaster, G. L. Mackie. 1989. Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusk in the Great Lakes. Can. J. Fish. Aquat. Sci. 46: 1587-1591.
- Limburg, K. E., V. A. Luzadis, M. Ramsey, K. L. Schulz, and C. M. Mayer. 2010. The good, the bad, and the algae: perceiving ecosystem services and disservices generated by zebra and quagga mussels. Journal of Great Lakes Research 36:86-92.
- Marshall, Laura. 2017. DSsim: Distance Sampling Simulations. R package version 1.1.2. https://CRAN.R-project.org/package=DSsim
- Miller, David Lawrence. 2017. Distance: Distance Sampling Detection Function and Abundance Estimation. R package version 0.9.7. https://CRAN.R-project.org/package=Distance
- Miller, E. B., M. C. Watzin. 2007. The effects of zebra mussels on the lower planktonic foodweb in Lake Champlain. Journal of Great Lakes Research 33(2):407-420.
- Qualls, T. M., D. M. Dolan, T. Reed, M. E. Zorn, J. Kennedy. 2007. Analysis of the impacts of the zebra mussel, Dreissena polymorpha, on nutrients, water clarity, and the chlorophyll-phosphorus relationship in Lower Green Bay. Journal of Great Lakes Research 33(3):617-626.
- USGS Nonindigenous Aquatic Species. Dreissena polymorpha. https://nas.er.usgs.gov/queries/factsheet.aspx?speciesID=5
- Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy, T. H. Johengen, G. L. Fahnenstiel, and T. F. Nalepa. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J. Fish. Aquat. Sci. 58: 1208-1221.
- Virginia Department of Game and Inland Fisheries. Zebra Mussels (Dreissena polymorpha). https://www.dgif.virginia.gov/wildlife/zebra-mussels/