Survey Designs for Distance Sampling: A Study of Zebra Mussels

Alana Danieu, Nick Fredrickson, Emily Kaegi, Clara Livingston Advisor: Katie St. Clair

Carleton College

April 3, 2018

• Statistical Reasoning

- Statistical Reasoning
- Lake Burgan Data

- Statistical Reasoning
- Lake Burgan Data
- Simulations

- Statistical Reasoning
- Lake Burgan Data
- Simulations
- Time Analysis

- Statistical Reasoning
- Lake Burgan Data
- Simulations
- Time Analysis
- Further Research

2 Step Approach:

9 Fit a detection function, g(x), to our data

- **9** Fit a detection function, g(x), to our data
 - x = distance perpendicular to transect

- Fit a detection function, g(x), to our data
 - x = distance perpendicular to transect
- 2 Use information from g(x) to estimate abundance using Horvitz-Thompson estimators

- Fit a detection function, g(x), to our data
 - x = distance perpendicular to transect
- 2 Use information from g(x) to estimate abundance using Horvitz-Thompson estimators
 - Use for simulations

- Fit a detection function, g(x), to our data
 - x = distance perpendicular to transect
- 2 Use information from g(x) to estimate abundance using Horvitz-Thompson estimators
 - Use for simulations
 - We used a half-normal distribution for our models where

$$g(x) = exp\Big[\frac{-x^2}{2\sigma^2}\Big]$$

• Need proper probability density function that integrates to 1 for MLE

$$f(x)=\frac{g(x)}{\mu}$$

 Need proper probability density function that integrates to 1 for MLE

$$f(x)=\frac{g(x)}{\mu}$$

• Normalizing Constant μ

 Need proper probability density function that integrates to 1 for MLE

$$f(x)=\frac{g(x)}{\mu}$$

- Normalizing Constant μ
 - Effective Half-Width

$$\mu=\int_0^w g(x)dx$$

Carleton College

Maximum Likelihood Estimation

- Maximum Likelihood Estimation
 - Likelihood Function

$$L_{x} = \prod_{i=1}^{n} f(x_{i}) = \frac{\prod_{i=1}^{n} g(x_{i})}{\mu^{n}} = \mu^{-n} exp \left[\frac{-\sum_{i=1}^{n} x_{i}^{2}}{2\sigma^{2}} \right]$$

- Maximum Likelihood Estimation
 - Likelihood Function

$$L_{x} = \prod_{i=1}^{n} f(x_{i}) = \frac{\prod_{i=1}^{n} g(x_{i})}{\mu^{n}} = \mu^{-n} exp \left[\frac{-\sum_{i=1}^{n} x_{i}^{2}}{2\sigma^{2}} \right]$$

• Find σ that maximizes L_X

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

- Maximum Likelihood Estimation
 - Likelihood Function

$$L_{x} = \prod_{i=1}^{n} f(x_{i}) = \frac{\prod_{i=1}^{n} g(x_{i})}{\mu^{n}} = \mu^{-n} exp \left[\frac{-\sum_{i=1}^{n} x_{i}^{2}}{2\sigma^{2}} \right]$$

• Find σ that maximizes L_X

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

• Only when we assume $w = \infty$

Average Probability of Detection

• Average Detectability

$$P_a = rac{2\mu L}{2wL} = rac{\mu}{w}$$

Carleton College

Average Probability of Detection

• Average Detectability

$$P_a = rac{2\mu L}{2wL} = rac{\mu}{w}$$

Carleton College

Average Probability of Detection

Average Detectability

$$P_a = rac{2\mu L}{2wL} = rac{\mu}{w}$$

Estimating Abundance

• Horvitz-Thompson Estimator

$$\hat{N} = \sum_{i=1}^{n} \frac{1}{p_i}$$

Estimating Abundance

• Horvitz-Thompson Estimator

$$\hat{N} = \sum_{i=1}^{n} \frac{1}{p_i}$$

• Where *p_i* is the probability that a detected mussel was found, thus

$$\hat{p}_i = \frac{a\hat{P_a}}{A}$$

Estimating Abundance

Horvitz-Thompson Estimator

$$\hat{N} = \sum_{i=1}^{n} \frac{1}{p_i}$$

• Where *p_i* is the probability that a detected mussel was found, thus

$$\hat{p}_i = \frac{a\hat{P_a}}{A}$$

• And plugging back in we have

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$

Coefficient of variation

- Coefficient of variation
- Let \hat{D} be our value of interest

$$CV(\hat{D}) = rac{SE(\hat{D})}{\hat{D}}$$

- Coefficient of variation
- Let \hat{D} be our value of interest

$$CV(\hat{D}) = rac{SE(\hat{D})}{\hat{D}}$$

• Thus, rewritten

$$SE(\hat{D}) = \hat{D} * CV(\hat{D})$$

$$CV(\hat{D}) = \sqrt{rac{rac{\kappa}{L^2(\kappa-1)}\sum_{k=1}^{K}l_k^2(rac{n_k}{l_k} - rac{n}{L})^2}{(n/L)^2} + rac{1}{2n}}$$

• Thus, we write

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

• L =total length of transects in survey

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects
- n = total number of mussels found

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects
- n = total number of mussels found
- n_k = number of mussels found on the kth transect

$$CV(\hat{D}) = \sqrt{\frac{\frac{K}{L^{2}(K-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}} - \frac{n}{L})^{2}}{(n/L)^{2}} + \frac{1}{2n}}$$

- L = total length of transects in survey
- K = total number of transects
- n = total number of mussels found
- n_k = number of mussels found on the kth transect
- $l_k = \text{length of of the kth transect (30 meters for all)}$

Effects of Changing K and n

Effects of Changing K and n

Carleton College

Statistics Comps

Cause of Variability in $cv(\hat{D})$

$$CV(\hat{D}) = \sqrt{\frac{\frac{\kappa}{L^2(\kappa-1)}\sum_{k=1}^{\kappa}l_k^2(\frac{n_k}{l_k}-\frac{n}{L})^2}{(n/L)^2}} + \frac{1}{2n}$$

• Multinomial randomization for variation in transects

Cause of Variability in $cv(\hat{D})$

$$CV(\hat{D}) = \sqrt{\frac{\frac{\kappa}{L^{2}(\kappa-1)}\sum_{k=1}^{K}l_{k}^{2}(\frac{n_{k}}{l_{k}}-\frac{n}{L})^{2}}{(n/L)^{2}}} + \frac{1}{2n}$$

- Multinomial randomization for variation in transects
- Assume equal probability

Lake Burgan

Carleton Co	ι	lege	9
-------------	---	------	---

Fitting Lake Burgan Data to a Model

• n = 52 mussels

Parameter	Estimate	Std. Error	CV
$\hat{\sigma}$	0.508	0.084	0.165
$\hat{\mu} = \hat{P}_a$	0.606	0.075	0.123
\hat{D}	0.090	0.0199	0.222
\hat{N}_a	89.584	19.921	0.222
\hat{N}_A	10,760	2,392	0.222

Fitting Lake Burgan Data to a Model

- n = 52 mussels
- *a* = 999 meters²

Parameter	Estimate	Std. Error	CV
$\hat{\sigma}$	0.508	0.084	0.165
$\hat{\mu} = \hat{P}_a$	0.606	0.075	0.123
\hat{D}	0.090	0.0199	0.222
\hat{N}_a	89.584	19.921	0.222
\hat{N}_A	10,760	2,392	0.222

Fitting Lake Burgan Data to a Model

- n = 52 mussels
- *a* = 999 meters²
- *A* = 120,000 meters²

Parameter	Estimate	Std. Error	CV
$\hat{\sigma}$	0.508	0.084	0.165
$\hat{\mu} = \hat{P}_a$	0.606	0.075	0.123
\hat{D}	0.090	0.0199	0.222
\hat{N}_a	89.584	19.921	0.222
\hat{N}_A	10,760	2,392	0.222

Lake Burgan

Carleton College

The variables we controlled in our simulations were:

• Region Size: $4000 \times 30 \text{ meters}^2$

- Region Size: $4000 \times 30 \text{ meters}^2$
- Population Size N

- Region Size: 4000 × 30 meters²
- Population Size N
- Number of Transects K

- Region Size: 4000 × 30 meters²
- Population Size N
- Number of Transects K
- ullet Detection Scale Parameter σ

- Region Size: 4000 × 30 meters²
- Population Size N
- Number of Transects K
- Detection Scale Parameter σ
- Number of Strata

- Region Size: 4000 × 30 meters²
- Population Size N
- Number of Transects K
- ullet Detection Scale Parameter σ
- Number of Strata
- Addition of Hotspots (areas of elevated density)

Basic Simulation

study area

N = 10,000 K = 24

Basic Simulation

Example Survey

• x = distance from transect

• x = distance from transect

 Each mussel is assigned a probability p_i

• x = distance from transect

 Each mussel is assigned a probability p_i

•
$$p_i = g(x_i)$$

• Detection \sim Bernoulli(p_i)

• Detection \sim Bernoulli(p_i)

 Assigned a 1 if found, 0 if not found (red X)

Comparing Simulation Results

There are two results we use to quantify the difference between sampling designs:

• Percent Bias (Accuracy)

$$\%\hat{B}ias_{\hat{N}} = \frac{\hat{N} - N}{N} \times 100\%$$

Comparing Simulation Results

There are two results we use to quantify the difference between sampling designs:

• Percent Bias (Accuracy)

$$\%\hat{Bias}_{\hat{N}} = \frac{\hat{\bar{N}} - N}{N} \times 100\%$$

• Coefficient of Variation (Precision)

$$CV(\hat{N}) = rac{SE(\hat{N})}{\hat{ar{N}}}$$

Varying N and σ

Varying number of transects, K

Varying number of transects, K

Stratified Design

Stratified Design: Correctly Identified

Correctly Identified Infestation Zone: 16 Transects

Stratified Design Simulation

study area

N = 7,500 & 2,500 K = 16, 8

Stratified Design Simulation

Example Survey

N = 7,500 & 2,500 K = 16, 8

Stratified Design: Incorrectly Identified

Incorrectly Identified Infestation Zone: 8 Transects

Carleton	College

Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design	n	Ñ	%Bias _{îv}	$CV(\hat{N})$
Constant K	90	10,107	1.07%	.16
Correctly Identified	105	10,032	.32%	.16
Incorrectly Identified	75	9, 985	15%	.17

Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design	n	Ñ	%Bias _î ,	$CV(\hat{N})$
Constant K	90	10, 107	1.07%	.16
Correctly Identified	105	10,032	.32%	.16
Incorrectly Identified	75	9, 985	15%	.17

Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design	n	Ñ	%Bias _î ,	$CV(\hat{N})$
Constant K	90	10, 107	1.07%	.16
Correctly Identified	105	10,032	.32%	.16
Incorrectly Identified	75	9, 985	15%	.17

A .01 difference in $CV(\hat{N})$ is a difference in SE of .01 * 10000 = 100 mussels

Addition of a Hotspot

Carleton College	Statistics Comps	April 3, 2018	34 / 47
			- / -

Hotspot Results: Correctly Identified Infestation Zone

Carleton College

Statistics Comps

April 3, 2018 35 / 47

Hotspot Results: Incorrectly Identified Infestation Zone

Estimated Abundance of Individuals

Estimated Abundance of Individuals

Simulation Results: Infestation Zone with Hotspot

Carleton College

Statistics Comps

April 3, 2018 37 / 47

• Higher \bar{n} meant more accurate and precise results

- Higher \bar{n} meant more accurate and precise results
 - Greater N and σ increase n

- Higher \bar{n} meant more accurate and precise results
 - Greater N and σ increase n
- Buckland suggests an *n* of at least 60-80

- Higher \bar{n} meant more accurate and precise results
 - Greater N and σ increase n
- Buckland suggests an *n* of at least 60-80
 - $\% Bias_{\hat{N}}$ was not significantly different than 0

- Higher \bar{n} meant more accurate and precise results
 - Greater N and σ increase n
- Buckland suggests an *n* of at least 60-80
 - $\% Bias_{\hat{N}}$ was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors

- Higher \bar{n} meant more accurate and precise results
 - Greater N and σ increase n
- Buckland suggests an *n* of at least 60-80
 - $\% Bias_{\hat{N}}$ was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors
- Predicted $SE(\hat{N})$ was smaller than the actual distribution of the \hat{N} values from the 300-500 runs

- Higher \bar{n} meant more accurate and precise results
 - Greater N and σ increase n
- Buckland suggests an *n* of at least 60-80
 - $\% Bias_{\hat{N}}$ was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors
- Predicted $SE(\hat{N})$ was smaller than the actual distribution of the \hat{N} values from the 300-500 runs
 - $SE(\hat{N})$ equation is biased

 Randomly placed 30 small marshmallows within transect

Carleton College

- Randomly placed 30 small marshmallows within transect
- l = 24 meters

- Randomly placed 30 small marshmallows within transect
- l = 24 meters
- w = 5 meters

- Randomly placed 30 small marshmallows within transect
- l = 24 meters
- w = 5 meters
- Timed participants to see how time affects estimates

\hat{N} Against Time

Carleton College

n Against Time

σ Against Time

Fitted μ

April 3, 2018 43 / 47

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$

$$\hat{P}_a = \frac{\hat{\mu}}{w}$$

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$
$$\hat{P}_a = \frac{\hat{\mu}}{a\hat{P}_a}$$

$$\hat{N} = rac{nA}{a(\hat{\mu}/w)}$$

W

Carleton College

$$\hat{N} = \frac{nA}{a\hat{P}_a}$$
$$\hat{\mu}$$

$$\hat{P}_a = \frac{\mu}{w}$$

$$\hat{N} = \frac{nA}{a(\hat{\mu}/w)}$$

 \hat{N} is a function of n and μ , which depends on σ

Carleton College

Statistics Comps

• Time has a nonlinear relationship with σ , μ , and n

- Time has a nonlinear relationship with σ , μ , and n
- Time has a linear relationship with \hat{N} as a result

- Time has a nonlinear relationship with σ , μ , and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection

- Time has a nonlinear relationship with σ , μ , and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection
- ullet Choose a time that optimizes σ

- Time has a nonlinear relationship with σ , μ , and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection
- ullet Choose a time that optimizes σ
- Increased σ implies increased n

- Time has a nonlinear relationship with σ , μ , and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection
- \bullet Choose a time that optimizes σ
- Increased σ implies increased n
- Supports the claim that we can control $CV(\hat{D})$ using n

Incorporating habitat covariates

- Incorporating habitat covariates
- Realistic hotspot

- Incorporating habitat covariates
- Realistic hotspot
- More thorough experiment on time

- Incorporating habitat covariates
- Realistic hotspot
- More thorough experiment on time
- Data limitations

References

- Buckland, S.T., Rexstad, E.A., Marques, T.A., Oedekoven, C.S. 2015. Distance Sampling: Methods and Applications. Switzerland. Springer International Publishing.
- Hart, R.A., A.C. Miller, and M. Davis. 2001. Empirically Derived Survival Rates of a Native Mussel, Amblema plicata, in the Mississippi and Otter Tail Rivers, Minnesota. American Midland Naturalist 146: 254-263.
- Hebert, P. D. N., B. W. Muncaster, G. L. Mackie. 1989. Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusk in the Great Lakes. Can. J. Fish. Aquat. Sci. 46: 1587-1591.
- Limburg, K. E., V. A. Luzadis, M. Ramsey, K. L. Schulz, and C. M. Mayer. 2010. The good, the bad, and the algae: perceiving ecosystem services and disservices generated by zebra and quagga mussels. Journal of Great Lakes Research 36:86-92.
- Marshall, Laura. 2017. DSsim: Distance Sampling Simulations. R package version 1.1.2. https://CRAN.R-project.org/package=DSsim
- Miller, David Lawrence. 2017. Distance: Distance Sampling Detection Function and Abundance Estimation. R package version 0.9.7. https://CRAN.R-project.org/package=Distance
- Miller, E. B., M. C. Watzin. 2007. The effects of zebra mussels on the lower planktonic foodweb in Lake Champlain. Journal of Great Lakes Research 33(2):407-420.
- Qualls, T. M., D. M. Dolan, T. Reed, M. E. Zorn, J. Kennedy. 2007. Analysis of the impacts of the zebra mussel, Dreissena polymorpha, on nutrients, water clarity, and the chlorophyll-phosphorus relationship in Lower Green Bay. Journal of Great Lakes Research 33(3):617-626.
- USGS Nonindigenous Aquatic Species. Dreissena polymorpha. https://nas.er.usgs.gov/queries/factsheet.aspx?speciesID=5
- Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy, T. H. Johengen, G. L. Fahnenstiel, and T. F. Nalepa. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J. Fish. Aquat. Sci. 58: 1208-1221.
- Virginia Department of Game and Inland Fisheries. Zebra Mussels (Dreissena polymorpha). https://www.dgif.virginia.gov/wildlife/zebra-mussels/