Survey Designs for Distance Sampling: A Study of Zebra Mussels

Alana Danieu, Nick Fredrickson, Emily Kaegi, Clara Livingston
Advisor: Katie St. Clair

Carleton College

April 3, 2018

Agenda

- Statistical Reasoning

Agenda

- Statistical Reasoning
- Lake Burgan Data

Agenda

- Statistical Reasoning
- Lake Burgan Data
- Simulations

Agenda

- Statistical Reasoning
- Lake Burgan Data
- Simulations
- Time Analysis

Agenda

- Statistical Reasoning
- Lake Burgan Data
- Simulations
- Time Analysis
- Further Research

Estimating Mussel Abundance and Density

2 Step Approach:
(1) Fit a detection function, $g(x)$, to our data

Estimating Mussel Abundance and Density

2 Step Approach:
(1) Fit a detection function, $g(x)$, to our data

- $x=$ distance perpendicular to transect

Estimating Mussel Abundance and Density

2 Step Approach:
(1) Fit a detection function, $g(x)$, to our data

- $x=$ distance perpendicular to transect
(2) Use information from $g(x)$ to estimate abundance using Horvitz-Thompson estimators

Estimating Mussel Abundance and Density

2 Step Approach:
(1) Fit a detection function, $g(x)$, to our data

- $x=$ distance perpendicular to transect
(2) Use information from $g(x)$ to estimate abundance using Horvitz-Thompson estimators
- Use for simulations

Estimating Mussel Abundance and Density

2 Step Approach:
(1) Fit a detection function, $g(x)$, to our data

- $x=$ distance perpendicular to transect
(2) Use information from $g(x)$ to estimate abundance using Horvitz-Thompson estimators
- Use for simulations
- We used a half-normal distribution for our models where

$$
g(x)=\exp \left[\frac{-x^{2}}{2 \sigma^{2}}\right]
$$

Estimating Detection Parameters

- Need proper probability density function that integrates to 1 for MLE

$$
f(x)=\frac{g(x)}{\mu}
$$

$$
\begin{aligned}
& \sigma=0.5, \mu=0.6, \text { and } \\
& w=1
\end{aligned}
$$

Estimating Detection Parameters

- Need proper probability density function that integrates to 1 for MLE

$$
f(x)=\frac{g(x)}{\mu}
$$

- Normalizing Constant μ

Estimating Detection Parameters

- Need proper probability density function that integrates to 1 for MLE

$$
f(x)=\frac{g(x)}{\mu}
$$

- Normalizing Constant μ
- Effective Half-Width

$$
\mu=\int_{0}^{w} g(x) d x
$$

Estimating Detection Parameters

Estimating Detection Parameters

- Maximum Likelihood Estimation

Estimating Detection Parameters

- Maximum Likelihood Estimation
- Likelihood Function

$$
L_{x}=\Pi_{i=1}^{n} f\left(x_{i}\right)=\frac{\Pi_{i=1}^{n} g\left(x_{i}\right)}{\mu^{n}}=\mu^{-n} \exp \left[\frac{-\sum_{i=1}^{n} x_{i}^{2}}{2 \sigma^{2}}\right]
$$

Estimating Detection Parameters

- Maximum Likelihood Estimation
- Likelihood Function

$$
L_{x}=\Pi_{i=1}^{n} f\left(x_{i}\right)=\frac{\Pi_{i=1}^{n} g\left(x_{i}\right)}{\mu^{n}}=\mu^{-n} \exp \left[\frac{-\sum_{i=1}^{n} x_{i}^{2}}{2 \sigma^{2}}\right]
$$

- Find σ that maximizes L_{x}

$$
\hat{\sigma}=\sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}
$$

Estimating Detection Parameters

- Maximum Likelihood Estimation
- Likelihood Function

$$
L_{x}=\Pi_{i=1}^{n} f\left(x_{i}\right)=\frac{\Pi_{i=1}^{n} g\left(x_{i}\right)}{\mu^{n}}=\mu^{-n} \exp \left[\frac{-\sum_{i=1}^{n} x_{i}^{2}}{2 \sigma^{2}}\right]
$$

- Find σ that maximizes L_{x}

$$
\hat{\sigma}=\sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}
$$

- Only when we assume $w=\infty$

Average Probability of Detection

- Average Detectability

$$
P_{a}=\frac{2 \mu L}{2 w L}=\frac{\mu}{w}
$$

- $P_{a}=\mu=0.606$
- $\sigma=0.508$

Average Probability of Detection

- Average Detectability

$$
P_{a}=\frac{2 \mu L}{2 w L}=\frac{\mu}{w}
$$

- $P_{a}=\mu=0.606$
- $\sigma=0.508$

Average Probability of Detection

- Average Detectability

$$
P_{a}=\frac{2 \mu L}{2 w L}=\frac{\mu}{w}
$$

- $P_{a}=\mu=0.606$
- $\sigma=0.508$

- $P_{a}=0.606$
- $\mu=1.818$
- $\sigma=1.525$

Estimating Abundance

- Horvitz-Thompson Estimator

$$
\hat{N}=\sum_{i=1}^{n} \frac{1}{p_{i}}
$$

Estimating Abundance

- Horvitz-Thompson Estimator

$$
\hat{N}=\sum_{i=1}^{n} \frac{1}{p_{i}}
$$

- Where p_{i} is the probability that a detected mussel was found, thus

$$
\hat{p}_{i}=\frac{a \hat{P}_{a}}{A}
$$

Estimating Abundance

- Horvitz-Thompson Estimator

$$
\hat{N}=\sum_{i=1}^{n} \frac{1}{p_{i}}
$$

- Where p_{i} is the probability that a detected mussel was found, thus

$$
\hat{p}_{i}=\frac{a \hat{P}_{a}}{A}
$$

- And plugging back in we have

$$
\hat{N}=\frac{n A}{a \hat{P_{a}}}
$$

Calculating Standard Error of Density

- Coefficient of variation

Calculating Standard Error of Density

- Coefficient of variation
- Let \hat{D} be our value of interest

$$
C V(\hat{D})=\frac{S E(\hat{D})}{\hat{D}}
$$

Calculating Standard Error of Density

- Coefficient of variation
- Let \hat{D} be our value of interest

$$
C V(\hat{D})=\frac{S E(\hat{D})}{\hat{D}}
$$

- Thus, rewritten

$$
S E(\hat{D})=\hat{D} * C V(\hat{D})
$$

Calculating Standard Error of Density

- Thus, we write

$$
C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}
$$

Calculating Standard Error of Density

- Thus, we write

$$
C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}
$$

- $L=$ total length of transects in survey

Calculating Standard Error of Density

- Thus, we write

$$
C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}
$$

- $L=$ total length of transects in survey
- $K=$ total number of transects

Calculating Standard Error of Density

- Thus, we write

$$
C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}
$$

- $L=$ total length of transects in survey
- $K=$ total number of transects
- $n=$ total number of mussels found

Calculating Standard Error of Density

- Thus, we write

$$
C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}
$$

- $L=$ total length of transects in survey
- $K=$ total number of transects
- $n=$ total number of mussels found
- $n_{k}=$ number of mussels found on the kth transect

Calculating Standard Error of Density

- Thus, we write

$$
C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}
$$

- $L=$ total length of transects in survey
- $K=$ total number of transects
- $n=$ total number of mussels found
- $n_{k}=$ number of mussels found on the kth transect
- $l_{k}=$ length of of the k th transect (30 meters for all)

Effects of Changing K and n

Effects of Changing K and n

Cause of Variability in $\operatorname{cv}(\hat{D})$

$C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}$

- Multinomial randomization for variation in transects

Cause of Variability in $\operatorname{cv}(\hat{D})$

$C V(\hat{D})=\sqrt{\frac{\frac{K}{L^{2}(K-1)} \sum_{k=1}^{K} l_{k}^{2}\left(\frac{n_{k}}{l_{k}}-\frac{n}{L}\right)^{2}}{(n / L)^{2}}+\frac{1}{2 n}}$

- Multinomial randomization for variation in transects
- Assume equal probability

Lake Burgan

Fitting Lake Burgan Data to a Model

- $n=52$ mussels

Parameter	Estimate	Std. Error	CV
$\hat{\sigma}$	0.508	0.084	0.165
$\hat{\mu}=\hat{P}_{a}$	0.606	0.075	0.123
\hat{D}	0.090	0.0199	0.222
\hat{N}_{a}	89.584	19.921	0.222
\hat{N}_{A}	10,760	2,392	0.222

Fitting Lake Burgan Data to a Model

- $n=52$ mussels
- $a=999$ meters 2

Parameter	Estimate	Std. Error	CV
$\hat{\sigma}$	0.508	0.084	0.165
$\hat{\mu}=\hat{P}_{a}$	0.606	0.075	0.123
\hat{D}	0.090	0.0199	0.222
\hat{N}_{a}	89.584	19.921	0.222
\hat{N}_{A}	10,760	2,392	0.222

Fitting Lake Burgan Data to a Model

- $n=52$ mussels
- $a=999$ meters 2
- $A=120,000$ meters 2

Parameter	Estimate	Std. Error	CV
$\hat{\sigma}$	0.508	0.084	0.165
$\hat{\mu}=\hat{P}_{a}$	0.606	0.075	0.123
\hat{D}	0.090	0.0199	0.222
\hat{N}_{a}	89.584	19.921	0.222
\hat{N}_{A}	10,760	2,392	0.222

Lake Burgan

Simulations

The variables we controlled in our simulations were:

- Region Size: 4000×30 meters 2

Simulations

The variables we controlled in our simulations were:

- Region Size: 4000×30 meters 2
- Population Size N

Simulations

The variables we controlled in our simulations were:

- Region Size: 4000×30 meters 2
- Population Size N
- Number of Transects K

Simulations

The variables we controlled in our simulations were:

- Region Size: 4000×30 meters 2
- Population Size N
- Number of Transects K
- Detection Scale Parameter σ

Simulations

The variables we controlled in our simulations were:

- Region Size: 4000×30 meters 2
- Population Size N
- Number of Transects K
- Detection Scale Parameter σ
- Number of Strata

Simulations

The variables we controlled in our simulations were:

- Region Size: 4000×30 meters 2
- Population Size N
- Number of Transects K
- Detection Scale Parameter σ
- Number of Strata
- Addition of Hotspots (areas of elevated density)

Basic Simulation

study area

$\mathrm{N}=10,000$ $K=24$

Basic Simulation

Example Survey

How the Simulation Works

- $x=$ distance from transect

How the Simulation Works

- $x=$ distance from transect

- Each mussel is assigned a probability p_{i}

How the Simulation Works

- $x=$ distance from transect

- Each mussel is assigned a probability p_{i}
- $p_{i}=g\left(x_{i}\right)$

How the Simulation Works

- Detection ~ Bernoulli $\left(p_{i}\right)$

How the Simulation Works

- Detection ~ Bernoulli $\left(p_{i}\right)$

- Assigned a 1 if found, 0 if not found (red X)

Comparing Simulation Results

There are two results we use to quantify the difference between sampling designs:

- Percent Bias (Accuracy)

$$
\% \hat{B i a s}_{\hat{N}}=\frac{\hat{\bar{N}}-N}{N} \times 100 \%
$$

Comparing Simulation Results

There are two results we use to quantify the difference between sampling designs:

- Percent Bias (Accuracy)

$$
\% \hat{B i a s}_{\hat{N}}=\frac{\hat{\bar{N}}-N}{N} \times 100 \%
$$

- Coefficient of Variation (Precision)

$$
C V(\hat{N})=\frac{S E(\hat{N})}{\hat{N}}
$$

Varying N and σ

Varying number of transects, K

Varying number of transects, K

Stratified Design

Stratified Design: Correctly Identified

Correctly Identified Infestation Zone: 16 Transects

Stratified Design Simulation

study area

$\mathrm{N}=7,500 \& 2,500$
$K=16,8$

Stratified Design Simulation

Example Survey

$$
\begin{aligned}
& N=7,500 \& 2,500 \\
& K=16,8
\end{aligned}
$$

Stratified Design: Incorrectly Identified

Incorrectly Identified Infestation Zone: 8 Transects

Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design	\bar{n}	$\hat{\bar{N}}$	\%Bias $_{\hat{N}}$	$C V(\hat{N})$
Constant K	90	10,107	1.07%	.16
Correctly Identified	105	10,032	$.32 \%$.16
Incorrectly Identified	75	9,985	$-.15 \%$.17

Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design	\bar{n}	$\hat{\bar{N}}$	\%Bias $_{\hat{N}}$	$C V(\hat{N})$
Constant K	90	10,107	1.07%	.16
Correctly Identified	105	10,032	$.32 \%$.16
Incorrectly Identified	75	9,985	$-.15 \%$.17

Stratified Design Results

Table: How Stratified Designs Effect Estimates

Design	\bar{n}	$\hat{\bar{N}}$	\%Bias $_{\hat{N}}$	$C V(\hat{N})$
Constant K	90	10,107	1.07%	.16
Correctly Identified	105	10,032	$.32 \%$.16
Incorrectly Identified	75	9,985	$-.15 \%$.17

A . 01 difference in $C V(\hat{N})$ is a difference in $S E$ of $.01 * 10000=100$ mussels

Addition of a Hotspot

Hotspot Results:Correctly Identified Infestation Zone

No Hotspot

Estimated Abundance of Individuals

Hotspot Results: Incorrectly Identified Infestation Zone

Hotspot

Estimated Abundance of Individuals

Simulation Results: Infestation Zone with Hotspot

Estimated Abundance of Individuals

Correctly ID Infest

Estimated Abundance of Individuals
$C V(\hat{N})=.155$

Incorrectly ID Infest

$C V(\hat{N})=.222$

Simulation Discussion

- Higher \bar{n} meant more accurate and precise results

Simulation Discussion

- Higher \bar{n} meant more accurate and precise results
- Greater N and σ increase n

Simulation Discussion

- Higher \bar{n} meant more accurate and precise results
- Greater N and σ increase n
- Buckland suggests an n of at least 60-80

Simulation Discussion

- Higher \bar{n} meant more accurate and precise results
- Greater N and σ increase n
- Buckland suggests an n of at least 60-80
- \% Bias $_{\hat{N}}$ was not significantly different than 0

Simulation Discussion

- Higher \bar{n} meant more accurate and precise results
- Greater N and σ increase n
- Buckland suggests an n of at least 60-80
- \%Bias \hat{N} was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors

Simulation Discussion

- Higher \bar{n} meant more accurate and precise results
- Greater N and σ increase n
- Buckland suggests an n of at least 60-80
- \%Bias \hat{N} was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors
- Predicted $\operatorname{SE}(\hat{N})$ was smaller than the actual distribution of the \hat{N} values from the 300-500 runs

Simulation Discussion

- Higher \bar{n} meant more accurate and precise results
- Greater N and σ increase n
- Buckland suggests an n of at least 60-80
- \%Bias \hat{N} was not significantly different than 0
- Incorrectly identified hotspots can create large prediction errors
- Predicted $\operatorname{SE}(\hat{N})$ was smaller than the actual distribution of the \hat{N} values from the 300-500 runs
- $\operatorname{SE}(\hat{N})$ equation is biased

Experiment on Time

- Randomly placed 30 small marshmallows within transect

Experiment on Time

- Randomly placed 30 small marshmallows within transect
- $l=24$ meters

Experiment on Time

- Randomly placed 30 small marshmallows within transect
- $l=24$ meters
- $w=5$ meters

Experiment on Time

- Randomly placed 30 small marshmallows within transect
- $l=24$ meters
- $w=5$ meters
- Timed participants to see how time affects estimates

\hat{N} Against Time

n Against Time

σ Against Time

Fitted Sigma Against Total Time (Min)

Fitted μ

Effects of σ on μ

Relationship between σ, μ, n, and \hat{N}

$$
\hat{N}=\frac{n A}{a \hat{P}_{a}}
$$

Relationship between σ, μ, n, and \hat{N}

$$
\begin{aligned}
& \hat{N}=\frac{n A}{a \hat{P}_{a}} \\
& \hat{P}_{a}=\frac{\hat{\mu}}{w}
\end{aligned}
$$

Relationship between σ, μ, n, and \hat{N}

$$
\begin{gathered}
\hat{N}=\frac{n A}{a \hat{P}_{a}} \\
\hat{P}_{a}=\frac{\hat{\mu}}{w} \\
\hat{N}=\frac{n A}{a(\hat{\mu} / w)}
\end{gathered}
$$

Relationship between σ, μ, n, and \hat{N}

$$
\begin{gathered}
\hat{N}=\frac{n A}{a \hat{P}_{a}} \\
\hat{P}_{a}=\frac{\hat{\mu}}{w} \\
\hat{N}=\frac{n A}{a(\hat{\mu} / w)}
\end{gathered}
$$

\hat{N} is a function of n and μ, which depends on σ

Experiment Takeaways

- Time has a nonlinear relationship with σ, μ, and n

Experiment Takeaways

- Time has a nonlinear relationship with σ, μ, and n
- Time has a linear relationship with \hat{N} as a result

Experiment Takeaways

- Time has a nonlinear relationship with σ, μ, and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection

Experiment Takeaways

- Time has a nonlinear relationship with σ, μ, and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection
- Choose a time that optimizes σ

Experiment Takeaways

- Time has a nonlinear relationship with σ, μ, and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection
- Choose a time that optimizes σ
- Increased σ implies increased n

Experiment Takeaways

- Time has a nonlinear relationship with σ, μ, and n
- Time has a linear relationship with \hat{N} as a result
- Choose a time that maximizes detection
- Choose a time that optimizes σ
- Increased σ implies increased n
- Supports the claim that we can control CV($\hat{D})$ using n

Further Research

- Incorporating habitat covariates

Further Research

- Incorporating habitat covariates
- Realistic hotspot

Further Research

- Incorporating habitat covariates
- Realistic hotspot
- More thorough experiment on time

Further Research

- Incorporating habitat covariates
- Realistic hotspot
- More thorough experiment on time
- Data limitations

References

- Buckland, S.T., Rexstad, E.A., Marques, T.A., Oedekoven, C.S. 2015. Distance Sampling: Methods and Applications. Switzerland. Springer International Publishing.
- Hart, R.A., A.C. Miller, and M. Davis. 2001. Empirically Derived Survival Rates of a Native Mussel, Amblema plicata, in the Mississippi and Otter Tail Rivers, Minnesota. American Midland Naturalist 146: 254-263.
- Hebert, P. D. N., B. W. Muncaster, G. L. Mackie. 1989. Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusk in the Great Lakes. Can. J. Fish. Aquat. Sci. 46: 1587-1591.
- Limburg, K. E., V. A. Luzadis, M. Ramsey, K. L. Schulz, and C. M. Mayer. 2010. The good, the bad, and the algae: perceiving ecosystem services and disservices generated by zebra and quagga mussels. Journal of Great Lakes Research 36:86-92.
- Marshall, Laura. 2017. DSsim: Distance Sampling Simulations. R package version 1.1.2. https://CRAN.R-project.org/package=DSsim
- Miller, David Lawrence. 2017. Distance: Distance Sampling Detection Function and Abundance Estimation. R package version 0.9.7. https://CRAN.R-project.org/package=Distance
- Miller, E. B., M. C. Watzin. 2007. The effects of zebra mussels on the lower planktonic foodweb in Lake Champlain. Journal of Great Lakes Research 33(2):407-420.
- Qualls, T. M., D. M. Dolan, T. Reed, M. E. Zorn, J. Kennedy. 2007. Analysis of the impacts of the zebra mussel, Dreissena polymorpha, on nutrients, water clarity, and the chlorophyll-phosphorus relationship in Lower Green Bay. Journal of Great Lakes Research 33(3):617-626.
- USGS Nonindigenous Aquatic Species. Dreissena polymorpha. https://nas.er.usgs.gov/queries/factsheet.aspx?speciesID =5
- Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy, T. H. Johengen, G. L. Fahnenstiel, and T. F. Nalepa. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J. Fish. Aquat. Sci. 58: 1208-1221.
- Virginia Department of Game and Inland Fisheries. Zebra Mussels (Dreissena polymorpha). https://www.dgif.virginia.gov/wildlife/zebra-mussels/

