Estimating zebra mussels densities using distance sampling

Jake Ferguson, Michael McCartney, and John Fieberg

The University of Minnesota Minnesota Aquatic Invasive Species Research Center

10/16/2018

Background

photo: Naomi Blinick

Reliably count zebra mussels at low densities

photo: Naomi Blinick

Assess control efficacy

 Determine conditions that promote growth Benefits of using a formal survey design

- Ensure sample is representative of the population
- Control the amount of area surveyed
 - Determine uncertainty in density

Distance sampling

image: Thomas Ostendorf

An approach for low and intermediate densities

Lake survey: summer 2017

Distance and detectability

The payoff

- X: is the number of zebra mussels detected
- A: is the amount of are surveyed
- *P*: is the detection probability of detecting a zebra mussel (P = 0.60)
 - Observed density: $\frac{X}{A} = 0.08$
 - Estimated density: $\frac{X}{PA} = 0.25$ (SE =0.09)

Investigating survey tradeoffs

image: Thomas Ostendorf

The fast/slow tradeoff

Should we go fast and cover lots of area, but maybe miss some mussels?

or

Should we go slow and detect everything, but cover less area?

image: minutephysics(youtube.com)

Controlling effort through design

Lake surveys: summer 2018

Time budget approach

- Time to setup each transect
- Time to conduct each survey
- Time to move between transects

Time to perform transect setup & search

Number of transects that can be completed

Impacts of the time budget on estimates

Conclusions

Distance sampling is an attractive approach at low-densities Requires two observers

> At higher densities quadrat surveys are more efficient

Still working on exploring how survey area and efficiency trade off more generally

Acknowledgements

Naomi Blinick Leslie Schroeder Sarah Baker Aislyn Keyes Austin Hilding Thomas Ostendorf Kylie Cattoor Keegan Lund

John Fieberg Michael McCartney Steve McComas Rich Rezanka Tom Jones

Contact me: Jake Ferguson (jakeferg@umn.edu)

Estimated detection function

Lake Burgan

Distance from transect line

Time it takes to move between transects

